
International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 49

Model-Driven Performance for the Pattern
and Advancement of Software Exhaustive

Systems
Muzammil H Mohammed

Department of Information Technology
College of Computers and Information

Technology
Taif University, Taif, Saudi Arabia

Sultan Aljahdali
Department of Computer Science

College of Computers and
Information Technology

 Taif University, Taif, Saudi Arabia

Nisar Hundewale
Department of Computer Science

 College of Computers and
Information Technology

Taif University, Taif, Saudi Arabia

Abstract

Model-Driven Engineering (MDE) is an advance to
widen software systems by build models and
pertaining robotic alteration to them to finally make
the execution for a intention platform. Although the
main focus of MDE is on the creation of code, it is
also essential to bear the study of the design with
esteem to quality attributes such as performance. To
balance the model-to-execution path of MDE
approaches, an MDE tool infrastructure should
provide what we call model-driven analysis. This
paper project will examine how the pattern and
advancement of software exhaustive systems (e.g., all
software in an aircraft) can be supported by model-
driven techniques, e.g. interactive visual tools, model
transformations, and automated consistency analyses.
Essential model-driven development, software
evolution, software visualization, software product
lines, embedded systems Experience in development
of Eclipse-based tools.

I. INTRODUCTION

Model-Driven Engineering (MDE) is an advance to
create software systems that engage making models
and applying mechanical alteration to them. The
models are uttered in modeling languages (e.g., UML)
that describe the Structure and behavior of the system.
MDE tools successively apply pre-defined
transformations to the input model created by the
developer and ultimately generate as output the source
code for the application. MDE tools typically impose
domain-specific constraints and generate output that
maps onto specific middle-ware platforms and
frameworks. MDE is often indistinctively associated

to OMG's Model-Driven Architecture and Model-
Driven Development.
The ability to create a software design and apply
automated transformations to generate the
implementation helps to avoid the complexity of
today's implementation platforms, component
technologies and frameworks. Many MDE solutions
focus on the generation of code that partially or
entirely implements the functional requirements.
However, these solutions often overlook runtime
quality attribute requirements, such as performance or
reliability. Fixing quality attribute problems once the
implementation is in place has a high cost and often
requires structural changes and refactoring. Avoiding
these problems is the main motivation to perform
analysis early in the design process. To complement
the model-to-implementation path of MDE
approaches, an MDE tool infrastructure should
provide what we call model-driven analysis. The
model to code path and the model-driven analysis
path are notionally represented in Figure 1. The goal
of model-driven analysis is to verify the ability of the
input design model to meet quality requirements.

Fig. 1. Model-Driven production and Model-Driven
examination

Model-Driven Performance Analysis

International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 50

Model-Driven Engineering (MDE) is an approach to
develop software systems by creating models and
applying automated transformations to them to
ultimately generate the implementation for a target
platform. Although the main focus of MDE is on the
generation of code, it is also necessary to support the
analysis of the designs with respect to quality
attributes such as performance. To complement the
model-to- implementation path of MDE approaches,
an MDE tool infrastructure should provide what we
call model-driven analysis. This paper describes an
approach to model-driven analysis based on reasoning
frameworks. In particular, it describes a performance
reasoning framework that can transform a design into
a model suitable for analysis of real-time performance
properties with different evaluation procedures
including rate monotonic analysis and simulation. The
concepts presented in this paper have been
implemented in the PACC Starter Kit, a development
environment that supports code generation and
analysis from the same models.

II EFFECTIVENESS AND INTRINSIC WORTH

OF MODEL-DRIVEN ENGINEERING (MD):

Model-driven Engineering (MDE) helps in reduction
of effort that is put forth for development and
maintenance of the systems. Using the MDE we are
not worried a lot about the code. The effort has to be
put in only to design the system effectively using the
model. Models define what is variable in a system, and
code generators produce the functionality that is
common in the application domain. The important role
of MDE in developing a system is that it always aims
to achieve high-performance with low effort. MDE is
unification of initiatives that aims in improving
software development by employing high-level,
domain specific, implementation, maintenance and
testing.
The important phase in developing a new system is to
know what the exact requirement is and to prepare an
abstract model of the system. MDE allows us to
effectively build a system which is best in quality and
low in effort. This is where all architects prefer the
MDE model of building systems because here there is
no need of putting a lot of effort in the code generation
segment. The efforts are much needed only to create
and build the model of the system. MDE also allows
us to have two phases to be done parallel. One phase is
the development of the software system and the other
is the maintenance phase.
MDE concentrates on the domain and so the outcome
of the software system that is developed using the

model-driven engineering will definitely be very
strong in nature with high-level of technical codes.

Enhancing Abstraction:

Abstraction is the most important issue in any software
language code. MDE enhances the abstraction and
helps in maintaining a rigid functionality between

Figure 2: using DSMLs and Domain-specific
Component Frameworks to Enhance Abstraction and

narrow the gap between problem and solution space of
software-intensive systems

Various software system modules. Any vulnerability
in abstraction could lead to a large flaw in the
developed system which is prone to some illegal
attacks. MDE aims at this abstraction enhancement so
that the outcome of code is molded in a secured and in
a flawless manner.

III PROBLEM AND SOLUTION SPACE:

Problem and solution are very much important for any
system of engineering. Only when the problem is
stated clearly the output (Expected) will be achieved
exactly. To understand the exact problem there are lot
of analysis to be done. After analyzing the problem the
domain has to be chosen. MDE is Domain Specific
and so the system is to be designed by the selected
domain. MDE provides various tools in helping the
programmer to achieve many complex codes and
algorithms that are necessary in developing some real-
time systems.
The solution phase is achieved stage by stage and so
the process cycle tends to get more complex and
difficult to implement. The solution must be tested
with various discrete values for robustness. MDE
allows various testing to be done in order to evaluate
the system’s efficiency and reliability. Once the
solution to the stated problem is done, the system is
ready for release.
MDE reduces the gap between the problem and the
solution space which means that the system is closely
working with the solution based on the problem

International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 51

defined. Any Engineering system should have to
minimize the space between the problem and the
solution so as to achieve better results.

IV AUTOMATED SOFTWARE MODULE
CLUSTERING:

Many metaheuristic methods have been successfully
applied to software module clustering. The field was
established by the seminal work of the Drexel group.
In this work, hill climbing was the primary search
technique, leading to the development of a tool called
Bunch for automated software module clustering.
Several other metaheuristic search technologies have
been applied, including simulated annealing and
genetic algorithms However, these experiments have
all shown that other techniques are outperformed in
both result quality and execution time by hill
climbing.
In order to formulate software engineering problems
as search problems, the representation and fitness
function need to be defined]. In the case of module
clustering, previous work has used the Module
Dependency Graph (MDG) as a representation of the
problem. The MDG is represented as a simple array
mapping modules (array indices) to clusters (array
elements used to identify clusters) .The array f2; 2; 3;
2; 4; 4; 2; 3g denotes a clustering of eight modules
into three clusters, identified by the numbers 2, 3, and
4. For example, modules numbered 0, 1, 3, and 6 are
all located in the same cluster (which is numbered 2).
The choice of numbers of module identifier is
arbitrary, so this clustering is equivalent to f1; 1; 3; 1;
4; 4; 1; 3g and f3; 3; 2; 3; 4; 4; 3; 2g. The MDG can
thus be thought of as a graph in which modules are
the nodes and their relationships are the edges. Edges
can be weighted, to indicate strength of relationship,
or unweighted, merely to indicate the presence or
absence of a relationship. As will be seen, the
algorithms studied in this paper differ noticeably in
their performance on weighted MDGs when
compared to the results obtained for unweighted
MDGs and so this distinction between weighted and
unweighted turns out to be an important aspect of
problem characterization. The choice of what
constitutes a “module” and what precisely can count
as a “relationship” is parameters to the approach. In
previous work (and in the present paper), a module is
taken to be a file and a relationship is an inclusion of
reference relationship between files (e.g., a method
invocation). In order to guide the search toward a
better modularization, it is necessary to capture this
notion of a “better” modularization. The intra-edges
are those for which the source and target of the edge

lie inside the same cluster. The inter-edges are those
for which the source and target lie in distinct clusters.
MQ is the sum of the ratio of intra-edges and inter-
edges in each cluster, called the Modularization
Factor (MFk) for cluster k. MFk can be defined as
follows:
MFk ¼
0; if i ¼ 0;
i
iþ12
_ j; if i > 0; ð1Þ

Where i is the weight of intra-edges and j is that of
inter edges, that is, j is the sum of edge weights for all
edges that originate or terminate in cluster k. The
reason for the occurrence of the term 1 2 j in the
above equation (rather than merely j) is to split the
penalty of the inter-edge across the two clusters that
connected by that edge. If the MDG is unweighted,
then the weights are set to 1. The MQ can be
calculated in terms of MF as

MQ ¼X
n
k¼1
MFk; ð2Þ

where n is the number of clusters. The goal of MQ is
to limit excessive coupling, but not to eliminate
coupling altogether. That is, if we simply regard
coupling as bad, then a “perfect” solution would have
a single module cluster containing all modules. Such a
solution would have zero coupling. However, this is
not an ideal solution because the module would not
have the best possible cohesion. The MQ measure
attempts to find a balance between coupling and
cohesion by combining them into a single
measurement. The values produced by MQ may be
arbitrarily large because the value is a sum over the
Number of clusters presents in a solution and so the
MQ function is not a metric. The aim is to reward
increased cohesion with a higher MQ score and to
punish increased coupling with a lower MQ score. In
order to handle weighted and unweighted graphs
using the same approach, an unweighted graph is
essentially treated as a weighted graph in which all
edges have an identical weight.

V VISUAL AND INTERACTIVE TOOLS (GUI):

A GUI is the front-end to software’s underlying back-
end code. An end user interacts with the software via
events; the software responds by changing its state,
which is usually reflected by changes to the GUI’s

International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 52

widgets. The complexity of back-end code dictates
the complexity of the front-end. For example, a
single-user application such as Microsoft Paint
employs a simple single-user GUI, with discrete
events, each completely predictable in its context of
use, used to manipulate simple widgets that change
their state only in response to user-generated events.
More complex applications require
synchronization/timing constraints among complex
widgets, e.g., movie players that show a continuous
stream of video rather than a sequence of discrete
frames, and nondeterministic GUIs in which it is not
possible to model the state of the software in its
entirety (e.g., due to possible interactions with system
memory or other system elements) and hence the
effect of an event cannot be predicted. To provide
focus, this paper will deal with an important class of
GUIs. The important characteristics of GUIs in this
class include their graphical orientation, event-driven
input, hierarchical structure of menus and windows,
the objects (widgets, windows, and frames) they
contain, and the properties (attributes) of those
objects. Formally, the class of GUIs of interest maybe
defined as follows:
MFk = 0 if i = 0

I / i+1/2 j if i > 0.
 A Graphical User Interface (GUI) is a hierarchical,
graphical front-end to a software system that accepts
as input user-generated and system-generated events
from a fixed set of events and Produces deterministic
graphical output. A GUI contains graphical objects;
each object has a fixed set of properties. At any time
during the execution of the GUI, these properties have
discrete values, the set of which constitutes the state
of the GUI. The above definition specifies a class of
GUIs that have a fixed set of events with a
deterministic outcome that can be performed on
objects with discrete valued properties. GUI testing,
in this paper, is defined as exercising the entire
application by generating only GUI inputs with the
intent of finding failures that manifest themselves
through GUI widgets. Research has shown that these
types of GUI testing finds faults related not only to
the GUI and its glue code, but also in the underlying
business logic of the application .Current techniques
used in practice to test such GUIs are largely manual.
The most popular tools used to test GUIs are
capture/replay tools such as WinRunner1 that provide
very little automation, especially for creating test
cases. There have been attempts to develop state-
machine models to automate some aspects of GUI
testing, e.g., test case generation and regression
testing. In our past work, we have developed an
event-flow model that represents events and

interactions. The event-flow model was designed to
capture GUI events and event interactions, but it does
not model some of the Web application
characteristics, as we describe in Section 3. In this
paper, we use the event-flow model to obtain test
cases for the GUI applications.

VI. TEST PRIORITIZATION OF VISUAL
TOOLS AND APPLICATIONS:

The software’s that are released by the vendors are
not constant. Any released product would have some
bugs or complexities that are to be fixed by the
vendor when the next version is made. So a lot of
testing and bug fixing techniques are followed in
order to ensure no such issues arise the next time for
the product.
In such situations, a large number of test cases may be
available from testing previous versions of the
application which are often reused to test the new
version of the application. However, running such
tests may take a significant amount of time.
Rothermel et al. report an example for which it takes
weeks to execute all of the test cases from a previous
version. Due to time constraints, a tester must often
select and execute a subset of these test cases. Test
case prioritization is the process of scheduling the
execution of test cases according to some criterion to
satisfy a performance goal. Consider the function for
test prioritization as formally defined in. Given T, a
test suite, the set of all test suites obtained by
permuting the tests of T and f. In this definition, refers
to the possible prioritizations of T and f is a function
that is applied to evaluate the orderings. The selection
of the function f leads to many criteria to prioritize
software tests.
For instance, prioritization criteria may consider code
coverage, fault likelihood, and fault exposure
potential. Binkley uses the semantic differences
between two programs to reduce the number of tests
that must be run during regression testing [. Jones and
Harrold reduce and prioritize test suites that are
MC/DC adequate. Jeffrey and Gupta consider the
number of statements executed and their potential to
influence the output produced by the test cases. Lee
and He reduce test suites by using tests that provide
coverage of the requirements. Offutt et al. use
coverage criteria to reduce test cases. None of these
prioritization criteria have been applied to event-
driven systems. In our past work, we have developed
additional criteria to prioritize GUI and Web-based
programs. Bryce and Memon prioritize preexisting
test suites for GUI-based programs by the lengths of
tests (i.e., the number of steps in a test case, where a

International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 53

test case is a sequence of events that a user invokes
through the GUI), early coverage of all unique events
in a test suite, and early event interaction coverage
between windows (i.e., select tests that contain
combinations of events invoked from different
windows which have not been covered in previously
selected tests).
 In half of these experiments, event interaction-based
prioritization results in the fastest fault detection rate.
The two applications that cover a larger percentage of
interactions in their test suites (64.58 and 99.34
percent, respectively) benefit from prioritization by
interaction coverage. The applications that cover a
smaller percentage of interactions in their test suites
(46.34 and 50.75 percent, respectively) do not benefit
from prioritization by interaction coverage.
 We concluded that the interaction coverage of the test
suite is an important characteristic to consider when
choosing this prioritization technique. Similarly, in
the Web testing domain, Sampath et al. prioritize user
session-based test suites for Web applications. These
experiments showed that systematic coverage of event
interactions and frequently accessed sequences
improve the rate of fault detection when tests do not
have a high Fault Detection Density (FDD), where
FDD is a measure of the number of faults that each
test identifies on average.

VII. MODELING TEST CASES

A test case is modeled as a sequence of actions. For
each action, a user sets a value for one or more
parameters. We provide examples of test cases for
both GUI and Web applications next. A sample test
case for a GUI application called TerpWord. The test
case sets nine parameters to values and visits three
unique windows. The test includes visits to the
TerpWord main window, Save, and Find windows.
An action occurs when a user sets values to one or
more parameters on a window before visiting a
different window. From this
Start of TC <Testcase>
No. of Actions <Length>4</Length>
Action 1 <Menu>

<Window>TerpWord</Window>
<Nonterminal>File</Nonterminal>
</Menu>
<Menu>
<Window>TerpWord</Window>
<Nonterminal>Save</Nonterminal>
</Menu>,

 we see that in Action 1, the user selects File->Save
from the TerpWord main menu. The parameter values
associated with this action are shown in first two rows
of
Window P-V P-V description
name No. (<parameter,value>)

TerpWord PV.1 <File,null>
PV.2 <Save,null>

Save PV.3 <File name text field, SETTEXT=“exampleFile”>
PV.4 <Files of Type drop-down box, LEFTCLICK

SELECT=“Plain Text File (*.txt)”>
PV.5 <OK button, LEFTCLICK>.

The parameter-values set in Action 2 occur on the
Save Window to set the file name to “exampleFile,”
select the file type as plain text, and click the OK
button. The user sets parameter-values in Action 3 on
the TerpWord main window by selecting Edit->Find.
Action 4 involves parameter-values on the “Find”
window. The user sets the text of the “Find what
drop-box” to “software defect” and then executes a
“left-click” on the Find Next button. Table
summarizes the windows, parameters, and values in
this test case and assigns unique numbers to each
window and action.

CONCLUSION

Preceding effort delight stand-alone GUI and web-
based applications as break up areas of research.
However, these types of applications have many
resemblance that let us to create a single model for
testing such event driven systems. The main focus of
this paper is to create a code for MDE, it is also
necessary to bear the study of the design with esteem
to quality attributes such as performance. We have
covered balance the model-to-execution path of
MDE approaches, an MDE tool infrastructure should
provider what we call model-driven analysis. This
paper plan will inspect how the prototype and
advancement of software exhaustive systems. This
replica may endorse future research to more generally
spotlight on stand-alone GUI and web based
applications instead of addressing them as disjoint
topics. Other researchers can use our universal model
to apply testing techniques more broadly. Within the
background of this model, we develop and
empirically assess numerous prioritization criterion
and pertain them to four stand-alone GUI and three
web-based applications and their existing test suites.
Our experiential study assesses the prioritization
criteria. Our ability to develop prioritization criteria
for two types of event-driven software indicates the
usefulness of our combined model for the problem of
test prioritization. This paper introduces the multi-
objective approach to software module clustering. It
introduces two multi-objective formulations of the
multi-objective problems.

References

International Journal of Engineering Trends and Technology- Volume2Issue2- 2011

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 54

1. Schmidt, D.: Model-driven engineering. IEEE
Computer Magazine 39(2) (2006)
2. Ivers, J., Moreno, G.A.: Model-driven development
with predictable quality. In: Companion to the
OOPSLA'07 Conference. (2007)
3. Bass, L., Ivers, J., Klein, M., Merson, P.:
Reasoning frameworks. Technical Report CMU/SEI-
2005-TR-007, Software Engineering Institute (2005)
4. Klein, M.H., Ralya, T., Pollak, B., Obenza, R.,
Gonzalez Harbour, M.: A practi-tioner's handbook for
real-time analysis. Kluwer Academic Publishers
(1993)
5. Hissam, S., Klein, M., Lehoczky, J., Merson, P.,
Moreno, G., Wallnau, K.: Per-formance property
theories for predictable assembly from certi¯able
components (PACC). Technical Report CMU/SEI-
2004-TR-017, Software Engineering Insti-tute (2004)
6. Gomaa, H., Hussein, M.: Model-Based Software
Design and Adaptation. Int. Conferenceon Software
Engineering for Adaptive and Self-Managing
Systems, p. 7 (2007).
7. Haugen, O., MOller-Pedersen, B., Oldevik, J.,
Solberg, A.: An MDA-based framework for model-
driven product derivation. In: M. H. Hamza, editor,
Software Engineering and Applications, pp. 709--714.
ACTA Press, Cambridge (2004).
8. Object Management Group, UML Profile for
Modeling and Analysis of Real-Time and Embedded
Systems, OMG Adopted Specification ptc/07-08-04
(2007).
9. Oldevik, J., Haugen, O.: Higher-Order
Transformations for Product Lines. In: 11th Int.
Software Product Line Conference (SPLC), pp. 243--
254, Kyoto, Japan (2007).
10. Petriu, D.C., Shen, H.: Applying the UML
Performance Profile: Graph Grammar based
derivation of LQN models from UML specifications.
In Comp. Performance Evaluation (T. Fields, P.
Harrison, J. Bradley, U. Harder, Eds.) LNCS 2324,
pp.159--177 (2002).
11. Smith, C.U., Performance Engineering of
Software Systems, Addison Wesley, (1990).
12. Voelter, M., Groher, I.: Product Line
Implementation using Aspect-Oriented and Model-
Driven Software Development. In: 11th International
Software Product Line Conference (SPLC), Kyoto,
Japan (2007).
13. Woodside, C.M., Neilson, J.E., Petriu, D.C.,
Majundar, S.: The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-
Server-like Distributed Software. In IEEE Trans. on
Computers, vol.44, Nb.1, pp. 20—34 (1995).
14. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen,
H., Israr, T., Merseguer, J.: Performance by Unified

Model Analysis (PUMA). In WOSP’05, Palma de
Mallorca, Spain (2005).
15. Woodside, C.M., Petriu, D.C., Xu, J., Israr, T.,
Merseguer, J.: Methods and Tools for
Performance by Unified Model Analysis (PUMA).
Technical Report SCE-08-06, Carleton
University, Systems and Computer Engineering, 35
pages (2008).
16. Ziadi, T., Jézéquel, J.M., Fondement, F.: Product
line derivation with uml. In Software Variability
Management Workshop, pp 94–-102, University of
Groningen Department of
Mathematics and Computing Science (2003).
17. Ziadi, T., Jézéquel, J.M.: Product Line
Engineering with the UML: Deriving Products. In
Software Product Lines, pp 557--586, Springer
(2006).

